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Abstract
In this paper, a comprehensive diffusion kinetics theory is formulated to describe
seamlessly tracer and chemical diffusion in antistructurally disordered B2
intermetallics showing positive and negative deviations from stoichiometry.
The theory is based around unit processes consisting of six-jump cycles that
can be assisted by intrinsic and extrinsic antistructural atoms of either atomic
species. The Ising alloy model is used to illustrate the formalism, but the
formalism can be adapted to other models. Expressions are developed for the
tracer diffusion coefficients, the phenomenological coefficients, the intrinsic
diffusion coefficients, the interdiffusion coefficient and the various correlation
factor components. Results for the tracer and collective correlation factors
and the vacancy wind factor (in interdiffusion) are in excellent agreement with
results from Monte Carlo computer simulations based around single vacancy
jumps.

1. Introduction

Soon after the general acceptance that vacancies are the principal vehicles for diffusion in
metals and alloys it became apparent that in the case of highly ordered intermetallics a vacancy
making random nearest neighbour jumps would soon leave a trail of extensive antistructural
disorder of higher energy in its wake (Elcock and McCombie 1958). To avoid this difficulty,
in these compounds, a vacancy must inevitably be confined to an ever-smaller set of lower
energy penalty jump sequences as the overall level of order increases. Finally, in the limit of
perfect order in the special case of the stoichiometric AB alloy taking the B2 or CsCl structure,
effective diffusion occurs by the vacancy moving on a six-jump-cycle (6JC) sequence. In this
mechanism, starting from a fully ordered configuration the vacancy progressively disorders
the structure in its first three (effective) jumps. But in its following three (effective) jumps the
vacancy progressively reorders the lattice resulting in the fully ordered configuration once more
(Huntington H B, private communication reported by Elcock and McCombie 1958). In the
process, however, both tracer atom and matter transport occur. Furthermore, punctuating the
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6JC are numerous jump reversals as many of the formed antistructural atoms return immediately
to their original sites. In B2 substitutionally disordered alloys, depending on the relative
contributions of the two types of 6JC in this structure, this can lead, in principle, to very small
values of the tracer correlation factors for at least one atomic component. This can result
in a large contribution to the overall activation energy for tracer diffusion coming from the
correlation factor itself (Belova and Murch 1998, 2000a).

Computer simulations of diffusion in stoichiometric intermetallics showing substitutional
disorder have clearly shown the emergence of the 6JC mechanism as the level of order increases
(Arnhold 1981, Belova et al 1995, Athènes et al 1997, Belova and Murch 2000b). Importantly,
fragments of the 6JC persist to relatively low levels of order with the result that the activation
energy for tracer diffusion over a wide temperature range remains close to that for the 6JC itself
(Belova and Murch 2000a). Some intermetallics taking the B2 structure have a tendency to
exhibit structural vacancies (Chang and Neumann 1982). The presence of a high concentration
of vacancies, even at stoichiometry, then makes the 6JC rather less identifiable. The present
paper does not directly address such intermetallics.

A number of general formalisms based around single vacancy jumps have been developed
for describing diffusion kinetics in substitutionally disordered intermetallics, see the recent
review by Murch and Belova (1998) and the older review by Bakker (1984). Common to
the formalisms is the major difficulty of dealing with concatenated sequences of effective
vacancy jumps, in particular, the 6JC. The difficulty is manifested as rather unsatisfactory
agreement with computer simulations of the tracer and collective correlation factors at low
temperatures/highly ordered configurations, see for example Bakker et al (1976) and Belova
and Murch (1996a).

Many years ago, Domian and Aronson (1964, 1965) sketched a diffusion kinetics
formalism built on the 6JC itself as the basic ‘unit’ of the diffusion process. The neglect
of correlation effects in that formalism meant that only a qualitative picture was possible.
Recently, Belova and Murch (2002a, 2002b) initiated a more detailed and comprehensive
approach to the problem. The original or ‘pure’ 6JC mechanism, by itself, does not allow
for the participation of existing antistructural atoms produced either by nonstoichiometry
(extrinsic defects) or by thermal activation (intrinsic defects). Belova and Murch (2002a,
2002b) proposed a natural extension of the 6JC in the intermetallic AB to allow for the
participation of antistructural atoms produced by nonstoichiometry: when excess of one
component, say B, is accommodated by antistructural B atoms, such atoms can contribute
directly and indirectly to enhanced mobility of 6JCs. Our previous treatment dealt, in effect,
with only one type of antistructural defect at a time. For, say, excess B, there is then a one-to-
one correspondence between deviation from stoichiometry, δ, and fraction cα

B of antistructural
B atoms on the home lattice (α) of A atoms (2δ = cα

B). Put another way, it was implied in
this formalism that at the stoichiometric composition, the only possibility for atomic migration
is pure 6JCs, since it is assumed there are no thermally activated antistructural atoms at this
composition. Such a diffusion kinetics theory can then only be used at compositions relatively
far from the stoichiometric composition.

For intermetallics that have relatively low ordering energies and exhibit only substitutional
disorder, e.g. CuZn, CoFe and AgMg, there are thermally activated antistructural atoms of both
atomic species always in coexistence at all compositions (Chang and Neumann 1982). Thus
the overall deviation from stoichiometry δ should correctly be written as 2δ = cα

B + cβ

B − 1.
As an aside, we might mention that an analogous feature, but involving vacancies and
interstitials, occurs in some nonstoichiometric oxides such as UO2+x (see, for example, Murch
and Thorn (1978)). In the oxide, it means that at all compositions oxygen diffusion can be
carried, in principle, by vacancies and interstitials, with their relative weightings dependent
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on composition. In the intermetallic it means that at all compositions diffusion of either
component can be carried, in principle, by pure 6JCs and antistructural atom assisted 6JCs,
with their relative weightings dependent on composition.

Accordingly, in this paper we have extended our model (Belova and Murch 2002a, 2002b)
to the general situation that encompasses antistructural disorder arising from nonstoichiometry
and thermal activation (extrinsic and intrinsic antistructural disorder). Furthermore, it should
also be recognized that the usual thermally activated vacancy population must also be permitted
to vary with composition. To incorporate these features we extend our previous 6JC diffusion
kinetics analysis by coupling it to a model for statistical disorder within the ordered state
(Allnatt and Lidiard 1993). This provides a complete and seamless description of tracer and
chemical diffusion via 6JCs at all compositions on both sides of stoichiometry. This is the
first analytical formalism to provide this. We test the formalism with Monte Carlo computer
simulation. In a subsequent paper we apply the formalism to analyse in detail the experimental
tracer and chemical diffusion data in several intermetallics.

2. Theory

For convenience, in the following we make use of the Ising alloy model where there are
three pair interaction energies EAA, EBB and EAB between AA, BB and AB pairs. We define
�A = EAA − EAB, �B = EBB − EAB and � = �A − �B; the ordering energy E is given
by E = EAA + EBB − 2EAB and the asymmetry parameter U is given by �/E . However,
we emphasize that the formalism can be adapted to other models: the main requirement is
a detailed set of migration and formation energies for the variants of the 6JC involving an
existing antistructural atom. For example, an embedded atom method simulation (see, for
example, Mishin and Farkas 1997) could in principle provide this information. Throughout
this paper the notation cβ

A is used to represent the fraction of A atoms on the β sublattice and
so on.

2.1. Antistructural disorder

First, we wish to analyse antistructural disorder. Assuming a random distribution of
antistructural atoms on each sublattice (the Bragg–Williams approximation) Allnatt and Lidiard
(1993) provided an expression for the long-range order parameter (their equation (3.10.9))
in terms of the ordering energy E . We rewrite that expression in terms of the sublattice
occupations (for convenience, we use the parameter δ′ = (cα

B + cβ

A)/2):

cβ

Acα
B

cα
Acβ

B

= exp(−8(1 − 2δ′)E/kT ) (1)

where k and T have their usual meanings. The sublattice occupations themselves are related
to each other and the overall composition of B atoms cB by

cα
A = 1 − cα

B; cβ

B = 2cB − cα
B; cβ

A = 1 − 2cB + cα
B (2)

and can be obtained by substituting into and then solving equation (1) numerically.

2.2. Sublattice and overall vacancy concentrations

In order to calculate the partitioning of the vacancies between the sublattices as well as the
overall vacancy site fraction we use the (Bragg–Williams approximation) relations given by
Allnatt and Lidiard (1993) (see their equations (3.10.12) and (3.3.39a)). The relations were
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introduced there in terms of the long-range order parameter. Again we rewrite the relations in
terms of sublattice occupations as follows:

cα
v

cβ
v

=
(

cα
Acα

B

cβ

Acβ

B

)1/2

exp(−4�(1 − 2δ′)/kT ) (3)

and

cα
v cβ

v = exp(−2g′
v + 8EAB − 8�δ′ + 8Eδ′ + 8cβ

Acα
B E)/kT, (4)

where cα
v +cβ

v = 2cv, g′
v is the configuration-independentcontribution to the vacancy formation

energy. After solving this system of equations with respect to cα
v and cβ

v and combining them
in order to obtain cv the overall vacancy fraction we find

cv = 0.5

(
cα

Acα
B

cβ

Acβ

B

)1/4

exp(−g′ + 4(−�cB + 2�Aδ′ − cβ

Acα
B E))/kT

+ 0.5

(
cα

Acα
B

cβ

Acβ

B

)−1/4

exp(−g′ + 4(�cA + 2�Bδ′ − cβ

Acα
B E))/kT, (5)

where g′ = g′
v − 4EAB is constant.

2.3. Tracer diffusion coefficients

Now let us consider tracer diffusion kinetics via the 6JC. Belova and Murch (2002a, 2002b)
employed the nomenclature of the well known ‘five-frequency model’ to describe the various
types of jump-unit of the 6JC. This is briefly summarized in the following, but for further
details Belova and Murch (2002a, 2002b) should be consulted. Consider, for example, the
α-6JC (the prefix indicates the vacancy starts from the α sublattice). First, there is the ‘w0

jump’ which is simply the pure α-6JC itself (this leads to displacements of tracer A and B
atoms). Next, the ‘w1 jump’, the rotational jump, is a set of four sub-types of the α-6JC
that occur in roughly a rotational sense around an antistructural B atom. These α-6JCs only
involve the B atom indirectly via its energy of interaction (see also Athènes et al 1997) and
they also lead to displacements of tracer A and B atoms. Next, the ‘w2 jump’ is a special
truncated cycle consisting of just two individual B jumps (one of which is the antistructural
atom). This process has a much higher frequency than other α-6JCs. This ‘jump’ only leads
to displacements of tracer B atoms. Finally, in the Ising alloy model used here both the
‘dissociation, i.e. w3 jumps’ and ‘association, i.e. w4 jumps’, are found to be identical to the
‘w0 jump’. The diffusion processes of the 6JC in the vicinity of an antistructural atom are
illustrated symbolically in figure 1.

Physically, the situation for diffusion in the Ising alloy model via 6JCs can be described
in the following way. There is no binding of the α-6JC vacancy to the antistructural B atom
(because w3 = w4). The vacancy moves relatively slowly through the lattice, largely by
isolated pure α-6JCs (w0). When the vacancy is close to an antistructural B atom, the vacancy
is engaged in either the faster rotational α-6JCs (w1) around the antistructural B atom or even
faster (w2) jumps directly involving the B atom. It turns out that this behaviour can be expressed
as

w2 � w3
1 > (w2

1 + w1
1)/2 > w0 = w3 = w4, (6)

where the superscripts on the w1 jumps refer to the rotational jump sub-types mentioned above
and described in detail by Belova and Murch (2002a).

For excess B compositions Belova and Murch (2002a, 2002b) divided the α-6JC into
two contributions, α-6JC, 1 and α-6JC, 2 corresponding to regions 1 and 2 respectively, and
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Figure 1. Symbolic representation of the basic jump types for an α-6JC in the vicinity of an
antistructural B atom. The nomenclature of the five-frequency model for impurity diffusion in the
fcc lattice (see, for example, Allnatt and Lidiard 1993) is used (Belova and Murch 2002a, 2002b).

analogously for the β-6JC. Region 1 refers to the region in the vicinity of an antistructural B
atom and region 2 refers to the remainder of the lattice. (In effect, in region 2, diffusion is via
pure 6JCs.) We now wish to generalize this by recognizing the co-existence of antistructural A
and B atoms at all compositions. Then we write that region 1 refers to the region in the vicinity
of an antistructural B atom and an antistructural A atom. Region 2 refers to the remainder of
the lattice where both the pure α- and β-6JCs operate.

There is an assumption here that the antistructural atoms do not interact with one another.
In effect, we are actually using the usual ‘very dilute approximation’, as has been employed
in several other areas of diffusion research such as solute enhancement of solvent diffusion in
dilute alloys (see for example Allnatt and Lidiard (1993)). There is a further assumption that
there are no cross-correlations in displacements (a) between α- and β-6JCs and (b) between
the two regions of a given type of 6JC. In the low temperature limit where the 6JC is operating
we therefore write that the tracer diffusion coefficients can be subdivided as

DA∗ = Dα-6JC,1
A∗ + Dα-6JC,2

A∗ + Dβ-6JC,1
A∗ + Dβ-6JC,2

A∗ (7)

and similarly for DB∗ .
After straightforward modification of the expressions provided by Belova and Murch

(2002a, 2002b) the complete expression for the tracer diffusion coefficient of B atoms is found
to be

DB∗ = a2 exp{7EAB/kT }
2cB

(8(1 − 23δ′)(w0βcβ
v + 2w0αcα

v ) + 2cα
Bcα

v [14w3
1α + 25(w1

1α + w2
1α)]

+ 24.1cβ

Acβ
v [w3

1β + 1.5(w1
1β + w2

1β)]/2), (8)

where a is the jump distance, w0β is the frequency of a pure β-6JC and so on.
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w0β = ν exp{(−6E(1 − 2δ′) + 7cβ

A�A + cα
B�B)/kT },

w0α = ν exp{(−6E(1 − 2δ′) + 7cα
B�B + cβ

A�A)/kT },
w3

1β = ν exp{(−5E(1 − 2δ′ − cα
B) + �A + 6cβ

A�A + cα
B�B)/kT },

w3
1α = ν exp{(−5E(1 − 2δ′ − cβ

A) + �B + 6cα
B�B + cβ

A�A)/kT },
w2

1β = ν exp{(−5E(1 − 2δ′ − cα
B) + 7cβ

A�A + cα
B�B)/kT },

w2
1α = ν exp{(−5E(1 − 2δ′ − cβ

A) + 7cα
B�B + cβ

A�A)/kT },
w1

1β = ν exp{(−6E(1 − 2δ′ + cβ

A) + �A + 7cβ

A�A + 2δ′�B)/kT },
w1

1α = ν exp{(−6E(1 − 2δ′ + cα
B) + �B + 7cα

B�B + δ′�A)/kT },

(9)

where ν is the attempt frequency (for the sake of simplicity in the expressions given here we
have assumed that all atoms have the same attempt frequency).

The tracer correlation factor component of the tracer diffusion coefficient is written as

fB = exp{(−7cα
B�B + cβ

A�A − cα
Bcβ

A E)/kT }
1 − cβ

A

×
[

4(1 − 23δ′)
(

w0βcβ

A

1 − cα
B

exp{8(1 − 2δ)�A/kT } + 2w0α

)

+ cα
B[14w3

1α + 25(w1
1α + w2

1α)] +
24.1(cβ

A/2)2

1 − cα
B

× [w3
1β + 1.5(w1

1β + w2
1β)] exp{8(1 − 2δ)�A/kT }

]
. (10)

The corresponding expression for the tracer diffusion coefficient of the A component is found
by simply interchanging B with A in these expressions as appropriate:

DA∗ = a2 exp{7EAB/kT }
2cA

(8(1 − 23δ′)(2w0βcβ
v + w0αcα

v )

+ 2cβ

Acβ
v [14w3

1β + 25(w1
1β + w2

1β)] + 24.1cα
Bcα

v [w3
1α + 1.5(w1

1α + w2
1α)]/2) (11)

fA = exp{(−7cβ

A�B + cα
B�A − cα

Bcβ

A E)/kT }
1 − cα

B

×
[

4(1 − 23δ′)
(

w0αcα
B

1 − cβ

A

exp{8(1 − 2δ)�B/kT } + 2w0β

)

+ cβ

A[14w3
1β + 25(w1

1β + w2
1β)]

+
24.1(cα

B/2)2

1 − cβ

A

[w3
1α + 1.5(w1

1α + w2
1α)] exp{8(1 − 2δ)�B/kT }

]
. (12)

2.4. Phenomenological coefficients

We subdivide the phenomenological coefficients Li j in an entirely analogous way to the tracer
diffusion coefficients:

LAA = Lβ-6JC,1
AA + Lβ-6JC,2

AA + Lα-6JC,1
AA + Lα-6JC,2

AA , (13)

LBB = Lβ-6JC,1
BB + Lβ-6JC,2

BB + Lα-6JC,1
BB + Lα-6JC,2

BB , (14)
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LAB = Lβ-6JC,1
AB + Lβ-6JC,2

AB + Lα-6JC,1
AB + Lα-6JC,2

AB . (15)

For reasons given by Belova and Murch (2002b) some of the components of the Li j are
zero: those identified are Lβ-6JC,2

AA , Lβ-6JC,2
AB and Lα-6JC,2

BB , Lα-6JC,2
AB . Furthermore, several of the

components of the Li j are uncorrelated1 and can be written down by inspection: these are

Lβ-6JC,2
BB = a2 N

kT
cβ

Bcβ
v w0β, (16)

Lα-6JC,2
AA = a2 N

kT
cα

Acα
v w0α, (17)

where N is the number of sites per unit volume.
For the remaining components of the Li j we modify, as appropriate, the expressions

obtained by Belova and Murch (2002a). These are

Lβ-6JC,1
AA = Ncβ

A(w3
1β + 4.3(w1

1β + w2
1β) + 22.5w0β)cβ

v a2/kT, (18)

Lα-6JC,1
AA = Ncα

B(2w3
1α + 3(w1

1α + w2
1α) + w0α)cα

v a2/kT, (19)

Lβ-6JC,1
BB = Ncβ

A(2w3
1β + 3(w1

1β + w2
1β) + w0β)cβ

v a2/kT, (20)

Lα-6JC,1
BB = Ncα

B(w3
1α + 4.3(w1

1α + w2
1α) + 22.5w0α)c

α
v a2/kT (21)

Lβ-6JC,1
AB = −2Ncβ

A(2w3
1β + 3(w1

1β + w2
1β))cβ

v a2/kT (22)

Lα-6JC,1
AB = −2Ncα

B(2w3
1α + 3(w1

1α + w2
1α))cα

v a2/kT . (23)

Now, we can derive expressions for the collective correlation factors (the correlated parts of the
corresponding phenomenological coefficients; these quantities are discussed by, for example,
Allnatt and Allnatt (1984) and Murch and Qin (1994)):

fAA = cα
B exp{(8�B − 7cα

B�B)/kT }
(1 − cα

B)(1 − cβ

A)
[2cα

B(2w3
1α + 3(w1

1α + w2
1α))]

+
2cβ

A exp{(cα
B�B − 7cβ

A�A)/kT }
(1 − cα

B)
[w3

1β + 4.3(w1
1β + w2

1β)]

+ 5(1 − 23δ)w0α exp{(−8�A + cβ

A�A + cα
B�B + 8cα

B�A)/kT }/cβ

A, (24)

fBB = cβ

A exp{(8�A − 7cβ

A�A)/kT }
(1 − cα

B)(1 − cβ

A)
[2cβ

A(2w3
1β + 3(w1

1β + w2
1β))]

+
2cα

B exp{(cβ

A�A − 7cα
B�B)/kT }

(1 − cβ

A)
[w3

1α + 4.3(w1
1α + w2

1α)]

+ 5(1 − 23δ)w0β exp{(−8�B + cβ

A�A + cα
B�B + 8cβ

A�B)/kT }/cα
B, (25)

f (A)
AB = −2(cα

B)2 exp{(8�B(1 − 2δ′) + cα
B�B − 7cβ

A�A)/kT }
(1 − cα

B)(1 − cβ

A)
[2w3

1α + 3(w1
1α + w2

1α)]

− 2cβ

A exp{(cα
B�B − 7cβ

A�A − cα
Bcβ

A E)/kT }
(1 − cα

B)
[2w3

1β + 3(w1
1β + w2

1β)], (26)

1 This means that the correlated part of the phenomenological coefficient, as reflected by the diagonal collective
correlation factor, is unity (Allnatt and Allnatt 1984, Murch and Qin 1994).
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f (B)

AB = −2(cβ

A)2 exp{(8�A(1 − 2δ′) + cβ

A�A − 7cα
B�B)/kT }

(1 − cα
B)(1 − cβ

A)
[2w3

1β + 3(w1
1β + w2

1β)]

− 2cα
B exp{(cβ

A�A − 7cα
B�B − cα

Bcβ

A E)/kT }
(1 − cβ

A)
[2w3

1α + 3(w1
1α + w2

1α)]. (27)

2.5. Thermodynamic factor

In order to obtain expressions for the intrinsic diffusion and interdiffusion coefficients we first
need to have an appropriate expression for the thermodynamic factor. Here we calculate the
thermodynamic factor at the Bragg–Williams approximation but using a far simpler procedure
than that used by Chang and Neumann (1982) and Ikeda et al (1998) in their calculations.

The thermodynamic factor φ is usually written in the well known form

φ = 1 +
∂ ln γA

∂ ln cA
= 1 +

∂ ln γB

∂ ln cB
, (28)

where γA (B) is the activity coefficient of A (B). Equivalently, in the binary system the
thermodynamic factor can be expressed as

φ = 1

kT
cAcB

∂(µA − µB)

∂cA
, (29)

where µA (B) are the chemical potentials of A (B). We now make use of the exact expression
for the difference in chemical potentials µA − µB provided by Belova and Murch (1996b)
for the ordered alloy. The expression was based on the application to binary systems of the
powerful ‘potential distribution method’ of Widom (1963):

µA − µB = −kT ln

(
cα

B exp(−(Eα
A − Eα

B)/kT ) + cβ

B exp(−(Eβ

A − Eβ

B)/kT )

2cA

)
, (30)

where Eα
A is the average energy (arising from interactions) of an A atom on the α sublattice

and the other quantities are defined by analogy.
Assuming a random distribution of antistructural atoms on each sublattice (Bragg–

Williams approximation) we can immediately rewrite this equation as

µA − µB = −kT ln

(
cα

B

cα
A

)
+ Eα

A − Eα
B. (31)

Using equations (2) we can write that

∂cα
A

∂cA
= − ∂cα

B

∂cA
; ∂cβ

B

∂cA
= −2 − ∂cα

B

∂cA
; ∂cβ

A

∂cA
= 2 +

∂cα
B

∂cA
. (32)

From equation (3) we then have that

∂cα
B

∂cA
=

(
16E

kT
− 2

cβ

Acβ

B

)(
−16E

kT
+

1

cα
Acα

B

+
1

cβ

Acβ

B

)−1

. (33)

The final expression for the thermodynamic factor is

φ = 8

kT
cAcB E

(
2 +

∂cα
B

∂cA

)
− cAcB

cα
Acα

B

(
∂cα

B

∂cA

)
(34)

where ∂cα
B/∂cA is given by equation (33).

For the intermetallic, equation (34) produces a (symmetric) maximum precisely at the
stoichiometric composition. This well known behaviour has been demonstrated by computer
simulation (Zhang et al 1988) and has been observed in a large number of experimental systems
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(see the review by Chang and Neumann (1982)). If the experimental thermodynamic factor
is not quite symmetric about the stoichiometric composition, it implies either composition-
dependent interaction energies or other defects participating in the disorder, e.g. structural
vacancies.

2.6. Intrinsic and interdiffusion coefficients

The intrinsic diffusion coefficients of the components A and B can be expressed in terms of
the Li j in the usual way as

DI
A = φ

kT

N

(
LAA

cA
− LAB

cB

)
; DI

B = φ
kT

N

(
LBB

cB
− LAB

cA

)
. (35)

For the interdiffusion coefficient we have that

D̃ = cA DI
B + cB DI

A (36)

and therefore that

D̃ = φ
kT

N

(
cB LAA

cA
+

cA LBB

cB
− 2LAB

)
. (37)

The intrinsic diffusion coefficients and the interdiffusion coefficient can therefore be readily
obtained using the expressions for the phenomenological coefficients and thermodynamic
factor given above.

The Darken–Manning expression (Darken 1948, Manning 1968) relates the interdiffusion
coefficient, the tracer diffusion coefficients and the thermodynamic factor:

D̃ = φS(cA DB∗ + cB DA∗), (38)

where S is the vacancy-wind factor (sometimes called the Manning factor) and is given by the
exact expression

S = kT

N

(
c2

B LAA + c2
A LBB − 2cBcA LAB

cBcA(cA DB∗ + cB DA∗)

)
= cB fAA + cAg fBB − 2cA f (A)

AB

cB fA + cAg fB
, (39)

where g is the ratio of the numbers of B atom jumps per atom to A atom jumps per atom. In
the present case g is given by

g = cAcα
B

cBcα
A

exp{8(�B − cβ

A E)/kT }. (40)

Equation (39) can be used to calculate the vacancy-wind factor in the present formalism.
Manning’s (1968, 1971) well known approximate expression for S is one of the products

of his diffusion kinetics formalism for the random alloy:

S = 1 +
1 − f0

f0

cAcB(DA∗ − DB∗)2

(cA DA∗ + cB DB∗)(cA DB∗ + cB DA∗)

= 1 +
1 − f0

f0

cAcB(g fB − fA)2

(cA fA + cBg fB)(cAg fB + cB fA)
, (41)

where f0 is the geometric tracer correlation factor for the structure; in this case f0 = 0.727 22
(b.c.c.).

It has been shown by Belova and Murch (2001) that equation (41) is not accurate at low
temperatures at the stoichiometric composition where the 6JCs clearly operate. For diffusion
by pure 6JCs at the stoichiometric composition it is readily shown that S takes the value of
0.42 for the B2 structure (Belova and Murch 2001). For reference purposes the vacancy-wind
factor according to equation (41) can be calculated in the present formalism.
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2.7. Computer simulation

It is generally accepted, see, for example, Bakker (1984) and Murch (1984), that in
intermetallics the Bragg–Williams approximation provides a very good description of the
average jump frequencies and thermodynamic factor except in the vicinity of the order–disorder
temperature (the value of which is poorly described by this approximation). The reason for
the success of the Bragg–Williams approximation is simply a result of the relatively small
population of antistructural atoms, which are essentially randomly distributed. The searching
test of the present diffusion kinetics theory is the determination of the correlation factors, these
being the tracer correlation factors, the collective correlation factors and their combination to
form the vacancy-wind factor S via equation (39). Computer simulation of these factors was
performed using standard procedures described, for example, by Belova and Murch (1996b,
2000a). (The interested reader is also directed to an older review on Monte Carlo simulation
of diffusion kinetics by Murch (1984).) All the computer simulations here made use of single
vacancy jumps; in other words, the 6JC was not explicitly specified in the simulations.

The periodic cell used in the present calculations was 100 × 100 × 100 (which means
that we had 125 000 sites on each sub-lattice). For the tracer correlation factor we specified
200 jumps per atom (more jumps did not change the results). Collective correlation factors were
calculated using 100 000 observations with the number of vacancy jumps in each observation
sufficiently large to provide at least 2000 jumps per atomic species.

3. Results and discussion

In figures 2(a) and (b) we present analytical and Monte Carlo results for the tracer correlation
factors fA and fB (equations (10) and (12)) as a function of composition cA for the conditions
E/kT = 1.6 and U = 0.0, +0.125 (the case when U = −0.125 can be obtained from the
case U = +0.125 by interchanging A and B). This temperature is approximately 0.39 of the
order–disorder temperature. At this temperature and at the stoichiometric composition the
value of cβ

A(=cα
B at stoichiometry with a low vacancy content) was found to equal 0.0017. For

a cell of the size of 250 000 sites in total this antistructural atom population means that we had
about 200 each of the two types of antistructural atom at the stoichiometric composition.

It can be seen that there is excellent agreement between the analytical results describing
diffusion by 6JCs and the results of the simulations describing diffusion only by single vacancy
jumps. The very low values taken by the correlation factors should be noted. This is a natural
result of many jumps of individual atoms from their home sublattice to the other sublattice
being immediately reversed. In the context of the 6JC it means that many such jump reversals
punctuate a given cycle. We might mention here that in general, as U increases, one tracer
correlation tracer factor remains small whilst the other approaches values of the order of unity.

In figures 3(a) and (b) we present corresponding results for the diagonal collective
correlation factors fAA and fBB (equations (24) and (25)) for the same conditions as above for
the tracer correlation factors. Again there is seen to be excellent agreement between theory and
simulation. The very small values of the correlation factors are again a result of the frequent
jump reversals discussed above.

In figures 4(a) and (b) we present corresponding results for the off-diagonal collective
correlation factors f (i)

AB i = A, B (equations (26) and (27)). Again there is excellent agreement
with computer simulations. It should be noted that these correlation factors are very small but
also negative. For diffusion by pure 6JCs in the perfectly ordered structure at the stoichiometric
composition it is easily shown that the off-diagonal collective correlation factors are zero
(Belova and Murch 2001). The small antistructural atom population in conjunction with the
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(a)

(b)

Figure 2. The tracer correlation factors fA and fB as a function of composition cA for the conditions
E/kT = 1.6 and (a) U = 0.0, (b) U = +0.125. Solid curves, equations (10), (12); symbols,
computer simulation results.

frequency relationships given by equation (6) inevitably gives negative cross-correlation factors
in an entirely analogous way to that found for the five-frequency model for impurity diffusion
(see for example, Allnatt 1981a, 1981b).

In figures 5(a) and (b) we present corresponding results for the vacancy-wind factor
S as featured in equation (39). As mentioned in section 2.6 the vacancy-wind factor for
interdiffusion by pure 6JCs at the stoichiometric composition with perfect order in the B2
structure takes a value of 0.42 (Belova and Murch 2001). This provides a very useful
lower limit. There is a reasonable amount of scatter in the data points because of the great
magnification of errors. Nonetheless it is quite clear that the analytical results generally follow
the simulation data very well. For reference purposes we also include the Manning (1968,
1971) result for S (equation (41)). It is clear that this gives values for S that are systematically
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(a)

(b)

Figure 3. The diagonal collective correlation factors fAA and fBB as a function of composition
cA for the conditions E/kT = 1.6 and (a) U = 0.0, (b) U = +0.125. Solid curves,
equations (24), (25); symbols, computer simulation results.

higher by roughly a factor of 2.4. We emphasize however that at temperatures closer to
the order–disorder temperature where the 6JC no longer dominates diffusion the Manning
expression becomes acceptable (see also Belova and Murch 1997, 2001).

It is well known that the pure 6JC gives limits of roughly 0.5 and 2.0 for the ratio of the tracer
diffusion coefficients. These limits have been widened further recently in a re-analysis of the
6JC (Drautz and Fahnle 1999). A Monte Carlo study using a four-frequency model showed
that the limits widen greatly with even a small population of intrinsic antistructural atoms
(Belova and Murch 1999). Similar behaviour can be expected from the present formalism.
Furthermore, extrinsic antistructural atoms will give analogous behaviour. Accordingly, from
a purely practical point of view, comparison of the measured ratio of the tracer diffusion
coefficients with limits for the 6JC is unlikely to be rewarding.
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Figure 4. The off-diagonal collective correlation factors f (A)
AB and f (B)

AB as a function of composition
cA for the conditions E/kT = 1.6 and (a) U = 0.0, (b) U = +0.125. Solid curves,
equations (26), (27); symbols, computer simulation results.

4. Conclusions

In this paper we have formulated a comprehensive diffusion kinetics theory to describe
seamlessly tracer and chemical diffusion in antistructurally disordered B2 intermetallics
exhibiting positive and negative deviations from stoichiometry. The theory was based around
unit processes consisting of 6JCs that can be assisted by intrinsic and extrinsic antistructural
atoms of either atomic species. The Ising alloy model was used to illustrate the formalism,
but the formalism can be adapted to other models. Analytical expressions were developed
for the tracer diffusion coefficients, the phenomenological coefficients, the intrinsic diffusion
coefficients, the interdiffusion coefficient and the various correlation factor components. There
was excellent agreement between the results of the formalism and Monte Carlo computer
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(a)

(b)

Figure 5. The vacancy-wind factor S as a function of composition cA for the conditions
E/kT = 1.6 and (a) U = 0.0, (b) U = +0.125. Solid curve, equation (39); dashed curve,
equation (41); symbols, computer simulation results.

simulation results based on single vacancy jumps. This agreement strongly suggests that the
physics of the diffusion process in this type of highly ordered structure is quantitatively very
well captured in the present analysis.

Acknowledgments

We wish to thank the Australian Research Council (Large Grants and Discovery Project Grants
Schemes) for its support of this research. One of us (IVB) also wishes to thank the Australian
Research Council for the award of a Queen Elizabeth II Fellowship.



Diffusion in substitutionally disordered B2 intermetallics 9577

References

Allnatt A R 1981a J. Phys. C: Solid State Phys. 14 5453
Allnatt A R 1981b J. Phys. C: Solid State Phys. 14 5467
Allnatt A R and Allnatt E L 1984 Phil. Mag. A 49 625
Allnatt A R and Lidiard A B 1993 Atomic Transport in Solids (Cambridge: Cambridge University Press)
Arnhold V 1981 Thesis Westfälische Wilhelms Universität, Münster
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